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Abstract 
 

Recently, auto-encoder has emerged as the most popular method in convolutional neural 
network (CNN) based image compression and has achieved impressive performance. In the 
traditional auto-encoder based image compression model, the encoder simply sends the 
features of last layer to the decoder, which cannot allocate bits over different spatial regions in 
an efficient way. Besides, these methods do not fully exploit the contextual information under 
different receptive fields for better reconstruction performance. In this paper, to solve these 
issues, a novel auto-encoder model is designed for image compression, which can effectively 
transmit the hierarchical features of the encoder to the decoder. Specifically, we first propose 
an adaptive bit-allocation strategy, which can adaptively select an importance channel. Then, 
we conduct the multiply operation on the generated importance mask and the features of the 
last layer in our proposed encoder to achieve efficient bit allocation. Moreover, we present an 
additional novel perceptual loss function for more accurate image details. Extensive 
experiments demonstrated that the proposed model can achieve significant superiority 
compared with JPEG and JPEG2000 both in both subjective and objective quality. Besides, 
our model shows better performance than the state-of-the-art convolutional neural network 
(CNN)-based image compression methods in terms of PSNR. 
 
 
Keywords: Image compression, Auto-encoder, Perceptual loss, Bit-allocate strategy, 
Importance map 
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1. Introduction 

In the past 20 years, the digital media technology has achieved great progress. Considering 
that everyone can share their daily life by taking pictures and videos with their friends on 
Internet, and the resolution of pictures and videos taken by mobile phones are increasing year 
by year, the storage of data is increasing with enormous rate. Due to the limitation of data 
transmission technology, image compression has become a key technique for various 
multimedia transmission services. Image compression typically starts from obtaining a 
description of an image, then quantifying the description, and recovering the image from the 
obtained description. A general image compression system mainly includes three components, 
i.e. encoder, quantizer, and decoder, to form a codec. The image compression codec in typical 
encoding standards, such as JPEG [1], JPEG2000 [2], and BPG [3] using the intra-coded 
HEVC [4], rely on the hand-crafted image transformation and separated optimization on 
codecs, which is not optimal for compression performance.  

An image compression system needs to deal with quantization, and to control the trade-off 
between reconstruction error d and the bitrates R. To minimizing 𝑑 + 𝜆𝑅, there are two 
directions. On the one hand, the rate term, which is determined by the entropy H of the latent 
image representation, can be optimized by an exact entropy rate estimator. On the other hand, 
the distortion term, which measures difference between the input image of encoder and the 
reconstructed image by decoder, can be minimized by designing better encoder and decoder. 

Recently, inspired by the powerful learning ability of deep convolutional neural 
networks(CNNs) in image restoration tasks [5,6], many methods [7-11] adopt CNNs to form 
different frameworks for lossless image compression [7] or lossy image compression [8-11], 
which have achieved significant improvement than many traditional image compression 
codecs. Mentzer et al. [7] propose a practical lossless image compression framework by 
learning-based method, named L3C, which introduces a fully parallelizable hierarchical 
probabilistic model for entropy coding, which can be optimized by an end-to-end way. This 
pioneer method shows significant superiority compared with many popular engineered codecs, 
such as PNG, WebP  and JPEG2000. 

Besides the lossless image compressiom, there are some CNN-based methods [8-10] that 
have been proposed to work on learned lossy compression. In [8], Ballé et al. propose an 
end-to-end image lossy compression network, which consists of a nonlinear analysis 
transformation, a uniform quantizer, and a nonlinear synthesis transformation, which produce 
nearly better compression performance than the standard JPEG and JPEG2000 method. 
However, such method treats the transmitted features equally and directly feeds the output of 
encoder to the corresponding decoder, which can not focus on the important information 
across spatial locations under limited bits for effective image compression. In [9], Mentzer et 
al. focus on the rate-distortion (R-D) of the latent image representation and presents a 
conditional probability model to optimize the R-D trade-off. The authors formulate a 
spatial-aware network, which can use an importance map to help the network spatially attend 
to the most important regions of the image with different numbers of bits. However, this 
approach chooses the fixed first feature map of the last layer in encoder as importance map, 
which can not adaptively emphasize informative spatial regions for various input. In [10], 
motivated by that the information is highly variant in different areas of an image, Li et al. 
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develop a CNN-based end-to-end system for content weighted image compression, which can 
allocate the content-aware bits under the guidance of a content-weighted importance map. The 
importance map can be produced by an convolutional neural network and the sum of the 
importance map can serve as a continuous alternative of discrate entropy estimation to control 
compression rate.  

However, such auto-encoder based image compression methods regard the image 
compression of different bit rates as indenpent tasks, which will face the challenge of large 
storages. To address this issue, in [11], Toderici et al proposes a LSTM recurrent network for 
variable-rate image compression, which can provide variable compression rates during 
deployment without requiring retraining of the network. Although this method could provide 
variable compression rates in an model, it has not any bit-allocation strategy and leads to less 
accurate reconstruction. In addition, the framework in [8,9,10] can not make fully use of the 
hierarchical features extracted from the encoder, which cannot produce a reconstructed image 
with better quality and detial. 

In this paper, to solve the problems mentioned above, we implement a novel auto-encoder 
framework for learned lossy image. Instead of directly sending the features of last layers in 
encoder to the correponsding decoder, to explore the features under different receptive fields, 
we aggregate the features from each downsampling layer of our encoder to obtain more 
accurate feature representation. Besides, different from choosing the first channel as the 
importance map in [9], we put forward an adaptive important channel selection stragety by 
comparing the sum of each channel. And then the multiply operation is conducted on the 
importance mask from the selective channel and the last layer features of the encoder to 
achieve efficient bit allocation. Furthermore, previous deep learning-based image 
compression models simply minimize the mean square error (MSE) between the reconstructed 
image and original input, which will generate overly-smooth compressed results. Therefore, 
we present an additional novel perceptual loss function and combine it with reconstruction 
loss to optimize our network, which can produce the compressed image with visual pleasant 
details. 

Our main contributions are summarized as: 
 To utilize the hierarchical features extracted by encoder, a novel auto-encoder framework 

is proposed, which transmits the hierarchical features from encoder to decoder to 
reconstruct images with better quality. 

 We proposed an adaptive important channel selection stragety to achieve efficient bit 
allocation. 

 The preceptual loss is generated by the proposed encoder rather than extra pre-train 
network to improve visual details. 

 The extensive experiments on KodakCD image datasets demonstrate that the proposed 
method performs favorably against the state-of-the-art compression approachs in terms of 
PSNR.  

The remainder of this paper is organized as follows. In Section 2, the related work is 
introduced. The proposed method is presented in Section 3, including hierarchical 
auto-encoder framework, adaptive importance map and encoder preceptual loss. The 
experimental results and comparisons with other method are demonstrated in Section 4. The 
conclusion of this paper is presented in Senction 5. 
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2. Related Work 
In early years, the auto-encoder model was first proposed by Hinton to address unsupervised 

learning problems [12]. Traditionally, it is composed of two or three layers of a neural network 
and applied BP (back propagation) [13] technique to learn nonlinear transformation for 
compressing and reconstructing the input data. It aims at learning an identity equation:  

                                                                       D�𝐸(𝑥)� = 𝑥�                                                              (1) 
which makes the output approximately equals to the input. 

Therefore, the auto-encoder is perfectly suitable for the data compression task, and there are 
many works [8,14,15] that use traditional auto-encoder model to compress images and have 
made great progress. On the other hand, other works [9,10,16] modify the traditional 
auto-encoder structure or propose new network structures for the better compression quality. 

2.1 Bit allocation strategy 
Since the conventional encoder assigns the same number of bit symbols for each spatial 

areas of the original image. However, in practice, image information in different spatial 
locations are highly variable. The importance map tries to allocate automatically lower 
symbols for the smooth information regions (e.g., the cloud) and higher symbols for the 
complicate regions (e.g., the house with exquisite and complicated pattern). In [9] an 
importance mask is added in the latter of encoder last layer for spatial bit allocation, which is 
produced from the first feature map of the encoder last layer. In [10] the content-aware 
convolutional neural network is used to learn an importance map to achieve different bit rates.  

2.2 Multi-scale structure for image compression 
In [16] a new auto-encoder structure is presented that exploits the multi-scale features of 

input images. The proposed model consists of two components: a multi-scale lossy 
auto-encoder and a multi-scale lossless coder for entropy coding. The lossy auto-encoder 
model directly connects the encoder and decoder at different depths to encode multi-scale 
image features. Then, the encoder sends the part of each layer to the corresponding layer in 
decoder. The lossless coder simultaneously encodes the quantized multi-scale features to 
produce transmitted symbols for decrease the time of encoding.  

2.3 Variable compression rate  
In deep learning-based image compression methods, there is a problem that is how to 

compress an image at different bit rates. Several options have been explored including training 
multiple modes [8], learning quantization-scaling parameters [14], and transmitting a subset of 
the encoded representation with a recurrent structure [11,17].  

The architecture of [11] consists of encoder and decoder based on recurrent neural network 
(RNN), a binarizer, and a neural network to model the distribution of latent variables. It solves 
the problem of variable compression rate from two aspects, that is, designing a residual 
encoder with powerful ability of feature extraction, and designing a probability estimation 
model for capture long-term dependencies between the patches of input image. In [17] three 
improvements over previous research are introduced. First, a new recurrent architecture is 
proposed, which makes the image compression network models and propagates spatial 
information more effectively between the network’s hidden layers. Second, besides lossless 
entropy coding, a bit allocation algorithm is adopted to adequately exploit the limited number 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020                              3827  

of bits in complex image regions. Finally, the results demonstrate that training with the 
combination of pixel-wise loss and structural similarity (SSIM) can improve the compression 
performance according to multiple metrics. These RNN-based methods provide a way to solve 
the problem of variable compression rate. However, the RNN-based methods are less accurate 
reconstruction in each compression rates. 

2.4 Generative compression  
In [18] the concept of generative compression is described as the compression of data using 

generative models. For model generative image, they use the variational auto-encoders [19] to 
alternate Generative Adversarial Networks (GANs). Their results show that the method of 
generative compression is more resilient to bit error rates than traditional image compression 
methods at very low bitrates. However, their model has merely proved the effectiveness of 
generative compression in small images below 64 × 64, and has limited effects on larger 
images. 

In [20] a new GAN-based network for extreme learned image compression is proposed, 
which aims at full-resolution images, targeting bitrates below 0.1 bpp and obtaining visually 
pleasing images at significantly lower bitrates than previous methods. The proposed method 
consists of unconditional and conditional GANS. The unconditional GANs can generate the 
overall image content with lower image quality, and the conditional GANs can utilize the 
corresponding semantic label map to reconstruct the parts of the image with better detail. Their 
results show that for extreme low bitrates, the proposed method can reconstruct the original 
image with better visual quality. 

3. Proposed Method 
In this section, the proposed network architecture is firstly introduced. And then we describe 

each of three main techniques used in our model: adaptive importance map, multi-scale 
auto-encoder, and encoder perceptual loss. 

3.1 Overview 
Given an original input image 𝑥 ∈ 𝑅𝐻×𝑊×𝐶 , we wish to design an image compression 

system to compress the image as small as possible and make the restored image same as the 
original image.  In an image compression system, the procedure of obtaining the compressed 
bitstream of input can be described as follows.   

𝑠 = 𝐻𝑒{𝑄[𝐸(𝑥;𝜑)]}                                                   (2) 
where 𝐸(𝑥;𝜑) ∶ 𝑅𝑑 → 𝑅𝑚  represents the encoder, which maps the input to a latent 
representation 𝑧 = 𝐸(𝑥;𝜑) . The quantizer 𝑄:𝑅 → 𝐵  discretizes the coordinates of 𝑧  to 
𝑁 = |𝐵| centers, obtaining �̂� with �̂�𝑖 = 𝑄(𝑧𝑖) ∈ 𝐵, which have limited value numbers and can 
be losslessly encoded into a bitstream s by an entropy encoder 𝐻𝑒(∙) ∈ (0,1). When the 
decoder receives the bitstreams, the process of the decoder restoring the final image can be 
formulated as 

𝑥� = 𝐷[𝐻𝑑(𝑠); 𝜃]                                                     (3) 
Here, 𝑥�  is the corresponding reconstructed image from compressed binary symbols. The 
decoder 𝐷(𝑥; 𝜃) forms the reconstructed image 𝑥� from the quantized latent representation �̂�, 
which is in turn losslessly decoded from the bitstream by entropy decoder 𝐻𝑑(∙) ∈ 𝐵.  
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3.2 Hierarchical Auto-encoder Structure 
In this subsection, we describe our proposed hierarchical structure of the encoder-decoder. 

As shown in Fig. 1, the proposed network is composed of four parts: an encoder-decoder for 
hierarchical features extraction, a bit allocation module, a quantizer and an entropy 
encoder-decoder. The encoder takes an image as input to produce four outputs f𝑘

𝐻𝑘×𝑊𝑘×𝑁(𝑘 =
1, 2, 3, 4) with different scales. Next, at 𝑘 = 1, 2, 3, three 1-channel convolutional layers are 
employed to make these outputs to 1 channel.  These outputs are downsampled to the same 
size as f4

𝐻4×𝑊4×𝑁 . This features are concatenated together  𝑧 = [𝑓1
𝐻4×𝑊4×1  

 , 𝑓2
𝐻4×𝑊4×1, 𝑓3

𝐻4×𝑊4×1, 𝑓4
𝐻4×𝑊4×𝑁].  After that, the concatenated hierarchical features 𝑧 are 

sent to the bit allocation model for an importance mask m. We conduct the multiply operation 
on m and 𝑧 to achieve efficient bit allocation. 

 
Fig. 1. The proposed multi-scale auto-encoder architecture for image compression. 

 
z� = 𝑧 ⨂ 𝑚                                                           (4) 

where 𝑧,𝑚 ∈ 𝑅𝐻4×𝑊4×(𝑁+3),   𝑚 ∈ [0,1] . Then, the generated feature z�  is quantized and 
arithmetic encoded (AE) to get s.  

When binary symbols are transmitted to the decoder, the arithmetic decoder (AD) firstly 
decodes it. Furthermore, the first, second and third channel of the decoded features are 
separately upsampled to the corresponding decoder layers size to get  the decoder inputs with 
different scales (𝑓1

𝐻1×𝑊1×1 ,𝑓2
𝐻2×𝑊2×1 , 𝑓3

𝐻3×𝑊3×1, 𝑓4
𝐻4×𝑊4×𝑁) . To reconstruct the original 

image, the rest channels of �̂� are directly sent to the last layer of our decoder. At the same time, 
the upsampled features are concatenated to the corresponding decoder layers respectively to 
provide multi-scale information. 

𝑙𝐷3 =  𝑙𝐷4 (𝑓4
𝐻4×𝑊4×𝑁)                                                    (5) 

x� = 𝑙𝐷𝑠 (𝑐𝑜𝑛𝑐𝑎𝑡(𝑙𝐷𝑠+1,𝑓𝑠
𝐻𝑠×𝑊𝑠×1))    s = (0,1,2)                              (6) 

where 𝑙𝐷𝑠  represents the s-th layer output of decoder. x�  is the final reconstructed image. 
𝑐𝑜𝑛𝑐𝑎𝑡(∙) denotes the concatenation operation. 
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3.3 Adaptive Importance Map 
In previous method [8], the importance mask is added at the end of the encoder for spatial 

bit-allocation. The authors choose the first feature map from the final output features 
generated by the encoder as importance map, which can not adaptively emphasize informative 
spatial regions for various input.  

For the features produced by the encoder, we consider that the large number of high values 
can cause more bits allocation during transmission. Since that the feature maps produced by 
the convolutional kernels have different values, the feature map containing a lot of large 
values will have big gaps with others including the small values. In the entropy coding stage, 
the feature map with a lot of high values can consume more bits, which shows this feature map 
contains more information than others. At the same time, it is crucial to choose a feature map 
which contains aboundant information as importance map for more effective bits alloction. As 
a result, in our network, we select the feature map with the largest sum of all values within 
itself as our importance map.  

The process of choosing importance map can be describe as follows. Given an input image x, 
which have 𝐻 × 𝑊 × 3 scales, the encoder E has three strides-2 convolution layers and 
bottleneck 𝑧 has C channels. The dimension of 𝑧 and �̂� will be 𝐻

8
× 𝑊

8
× 𝐶.  

We choose adaptively the importance map, which is the n-th channel of encoder last layer 
with largest values after summing. 

𝑛 = 𝑎𝑟𝑔𝑚𝑎𝑥{𝑘}  ∑ 𝑓𝑖,𝑗,𝑘𝑖,𝑗                                                       (7) 
Actually, the range of the importance map values 𝑓𝑛  cannot be used directly in produce 
importance mask. We need to make a transformation for the range of  𝑓𝑛 values, that is: 

𝑓𝑛 = 𝐶 × 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑓𝑛)  𝑓𝑛 ∈ (0,𝐶)                                              (8) 
Finally, the importance map size is 𝐻

8
× 𝑊

8
× 1 and should be expanded into mask m which 

have same size with z by a simple function: 

m𝑖,𝑗,𝑘 = �
1   ,    𝑖𝑓 𝑘 < 𝑓𝑖,𝑗,𝑛

�𝑓𝑖,𝑗,𝑛 − 𝑘�, 𝑖𝑓 𝑘 ≤ 𝑓𝑖,𝑗,𝑛 ≤ 𝑘 + 1
0   , 𝑖𝑓 𝑘 + 1 > 𝑓𝑖,𝑗,𝑛

�                                       (9) 

where 𝑓𝑖,𝑗,𝑛 means the values of importance map at spatial location (𝑖, 𝑗), and k denotes the 
index of mask m channel.   
 

3.4 Encoding Perceptual Loss 
Nowadays many computation perception algorithm [21,22,23] are proposed. The perceptual 

loss shows that the visually high-quality images can be generated by defining and optimizing 
perceptual loss function based on high-level features. 

The traditional loss function is to calculate the pixel-level distance between ground-truth 
image and generated image, which makes each pixel of the generated image as similar as 
possible to original image. If the generated image has few pixel offsets from the original image, 
the pixel-level loss function will show highly discrepancy, whereas the generated image 
visually is very similar to original image.  
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Considering that people can’t find the slight pixel offsets between two different images, the 

perceptual loss based on high-level features can better evaluate image visual similarity 
between two images. The perceptual loss typically needs a pre-trained network to extract 
high-level features, and the pre-trained network often chooses the VGG-Net trained in 
ImageNet dataset. That is:  

     𝑑𝑓𝑒𝑎𝑡
𝑙 (𝑥, 𝑥�) = 1

𝐶𝑙𝑊𝑙𝐻𝑙
‖𝑉𝐺𝐺𝑙(𝑥) −𝑉𝐺𝐺𝑙(𝑥�)‖2

2                                      (10) 
where 𝑙 is the l-th layer of VGG-Net, the l-th output is a feature map of shape 𝐶𝑙 × 𝑊𝑙 × 𝐻𝑙. 
However, in image or video compression task, the auto-encoder structure has been restricted 
the depth of encoder and decoder, because the structure of encoder and decoder should be 
generally mirror symmetrical. If the number of encoder layers is increased by N layers, the 
total numbers of auto-encoder layers will increase by 2N layers. Therefore, in the case of 
memory limitation, the addition of the pre-trained model will make the depth of encoder and 
decoder become shallower, which lead to the degradation on the reconstructed image quality.  
      Instead of using pre-trained model, we use the encoder to get perceptual loss. In our 
proposed auto-encoder framework, the encoder can extract the features from input, which can 
be used to compute perceptual loss, that is: 

𝑑𝑓𝑒𝑎𝑡(𝑥, 𝑥�) = 1
𝐶𝑊𝐻

‖𝐸(𝑥) − 𝐸(𝑥�)‖22                                         (11) 
where the output of encoder is feature maps of shape 𝐻 × 𝑊 × 𝐶, and 𝐸(𝑥) represent the 
encoder final outputs when input an image 𝑥. 𝑥� is the reconstruction of 𝑥 in decoder. 
 

3.5 Loss Function 
In this section, we describe the loss function used in our model in training step. Optimizing 

the trade-off between image reconstruction distortion and the bit rates in image compression is 
the permanent theme. We adopt it as a part of our loss function to learn compression and 
reconstruction of an image.  

However, the section 3.4 has analyzed the disadvantage of pixel-level loss function, that is, 
the traditional distortion MSE will make the decoder reconstruct over smooth image. 
Therefore, we propose a new perceptual loss as another part of distortion term to enhance the 
detail of the reconstructed image. Suppose that mini-batch input image is 𝑥 = �𝑥(1), 𝑥(2) � 
�, … , 𝑥(𝐵)� and the masked outputs of encoder are �̃� = {�̃�(1), �̃�(2), … , �̃�(𝐵)}, our object function 
can be described as follows. 

L = 1
𝐵
∑ �𝜆2 �𝑑�𝑥(𝑏), 𝑥�(𝑏)�+ 𝜆1𝑑𝑓𝑒𝑎𝑡�𝑥(𝑏),𝑥�(𝑏)��+ 𝐿𝑅 �𝑄��̃�(𝑏)���𝑏          (12) 

where 𝐿𝑅 is the rate loss, which describes the entropy of compressed image. In our model, we 
adopt MSE (Mean Squared Error) as the 𝑑(·,·), and the 𝑑𝑓𝑒𝑎𝑡(·,·) is the encoder perceptual 
loss described in section 3.4. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020                              3831  

 
Fig. 2. Comparison of the rate-distortion curves by different methods: (left) PSNR, (right) MS-SSIM. 

 4. Experiments  
Our hierarchical auto-encoder image compression models are trained on the subset of 

ImageNet [24], which includes 33,600 images with a size larger than 128 × 128. During 
training, these images are cropped into 128 × 128 patches and feed these patches to our 
network as original inputs. After training, we conduct experiments to evaluate the 
performance of our network for image compression task on the Kodak PhotoCD [25] image 
dataset, which consists of 24 natural images with size 512 × 768 or 768 × 512. 

4.1 Parameter Setting 
In our experiments, we set the number of convolutional kernel output channels n according 

to the bitrates, i.e. 128, when the bitrate is lower than 0.5 bpp and 192 otherwise. Then, 
different values of the trade-off parameter λ2 in the range [0.001, 0.02] are chosen to get 
different bitrates. The encoder perceptual loss term  λ1  is set to 10 and other network 
parameters have shown in Fig. 1.  

The generalized divisive normalization (GDN) is chosen as our activation function in 
encoder and the inverse generalized divisive normalization (IGDN) used in decoder, which are 
proposed in [26]. In the stage of entropy coding, the method of model the probability 
distribution of latent variable representation is the same as that proposed in [27]. During 
training, in order to backpropagate gradient through the non-differentiable quantizer, we add a 
uniform noise to latent representation for replacing the quantizer, as in [8].  
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4.2 Performance Evaluation 
We compared the performance of our proposed methods with existing image compression 

standard formats, JPEG, JPEG2000, and state-of-the-art CNNs-based image compression 
methods. In this paper, image distortion is evaluated by Multi-Scale Structure Similarity 
(MS-SSIM) [28] and Peak Signal-to-Noise Ratio (PSNR), while compression ratio is 
evaluated by bits per pixel (bpp), which calculates as the number of bits used to code the 
original image divided by the number of pixels. 

Fig. 2 shows the R-D curves with different compression methods on Kodak dataset. In 
terms of MS-SSIM, our proposed method has achieved superior performance to the existing 
image compression standard formats (JPEG; JPEG2000) and deep learning-based methods 
([8,11]). Moreover, when PSNR is used to evaluation, these deep learning-based methods 
([9,11,29]) have poor performance, but our model still keep the performance in a good level.  

Finally, we provide subjective comparisons between our compression results and other 
results of popular codecs in Fig. 3. Because each of the codecs can only compress an image to 
a coarse-level output bit rate, when compared with other codecs, we choose the bitrates of 
other codecs that is same or larger than the bitrates produced by our model, which purpose is to 
give other image compression methods an advantage in term of bitrates. In Fig. 3, These 
results indicate that the images compressed by standard compression methods usually perform 
well when evaluated with PSNR, but perform poorly when evaluated with MS-SSIM. Our 
model enables the compressed images to perform better when evaluated with PSNR and 
MS-SSIM. 
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Fig. 3. Image producted by different compression systems at different compression rate. From the left to 

right: groundtruth, JPEG, JPEG2000 and Ours.    

4.3 Ablation Study  

4.3.1 Adaptive importance map 
As described in detail in Section 3.3, we adaptively choose an important map to 

dynamically adjust the bit allocation of different channels features used for encoding spatial 
locations of an image effectively. To prove the advantage of the adaptive selection model, we 
trained three auto-encoder 𝑀, 𝑀𝐼

1and  𝑀𝐼
∗, where 𝑀𝐼

∗ choose the largest feature map of last 
layer in encoder as an importance map, 𝑀𝐼

1 uses the first feature map as importance map, and 
𝑀  has not bit-allocation model. During training, 𝑀 , 𝑀𝐼

1  and 𝑀𝐼
∗   have set 𝑁 = 128  and 

trained with the same iteration. In Table 1, it shows that the MS-SSIM and PSNR results 
evaluated in Kodak PhotoCD image dataset.   

These results mean that, no matter which channel is chosen as the importance map, the 
addition of importance map can improve the compression model performance. At the same 
time, our strategy of adaptive choosing importance map can best boost the MS-SSIM from 
0.9593 to 0.9608 and PSNR from 29.96 to 30.18 in model 𝑀.  
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Table 1. Importance Channel Selection Experiments 

Metric 𝑴 𝑴𝑰
𝟏 𝑴𝑰

∗ 
PSNR 29.96 29.99 30.18 

MS-SSIM 0.9593 0.9605 0.9608 
BPP 0.361 0.361 0.361 

 
Furthermore, Fig. 4 shows the visualization of all channels of the latent representation for M, 

which displays that the information discrepancy between different importance maps. In these 
feature maps, the 26th channel is the largest feature map and has been upsampled for better 
observation, which obviously has more semantic information than others.  

Fig. 4 shows the visualization of all channels of the latent representation for M, which 
displays that the information discrepancy between different importance maps. In these feature 
maps, the 26th channel obviously has more semantic information than others, which will be 
selected as the importance channel. As the result, the proposed channel selection strategy has 
advantage to represent semantic information. Furthermore, the selective important channel 
comes directly from the features of encoder last layer, and does not need additional 
convolutional operator. If extra semantic segmentation network is introduced, it may lead to 
more semantic information, but it will increase computation complexity and more network 
parameters.  

 

 
 

Fig. 4. Visualization of the latent representation in model 𝑀 at a median-bpp operating point 
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4.3.2 Encoder perceptual loss  
The detail of encoder perceptual loss is described in Section 3.4. The purpose of choosing 

encoder perceptual loss as a feature-level constrain term in our loss function is that, it can 
make our model pay attention to the detail of reconstructed image and does not require extra 
memory beside auto-encoder structure during training. We trained two auto-encoder 𝑀 and 
𝑀𝑝, where M only chooses MSE as the distortion term and 𝑀𝑝 selects the combination of 
MSE  and encoder perceptual loss. The entropy rate terms of objective function are same in 𝑀 
and 𝑀𝑝.  

Fig. 5 shows this combination can guide our image compression model to reconstruct an 
image with better quality. It is noted that the proposed encoder perceptual loss does not require 
additional pre-training network to obtain high-level features, which reduces the load of GPU 
during the training stage. Considering that the perceptual loss needs encoder to extract 
high-level features, it cannot be used as a network loss alone. Therefore, we adopt joint loss 
function of perceptual loss and MSE loss as our reconstruction loss term. 

 

 
Fig. 5. PSNR and MS-SSIM comparison between the model 𝑀 and the model 𝑀𝑝 
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5. Conclusion 
In this paper, we introduced three techniques: adaptive importance channel, multi-scale 

auto-encoder network, and encoder perceptual loss. Our experiments show that these 
techniques boost our performance. The proposed method of adaptive importance channel 
enables our model with the ability to allocate bits and improves our model’s performance on 
MS-SSIM and PSNR. Training with encoder perceptual loss and multi-scale auto-encoder 
structure provide further improvements to reconstruct perceptual structures, such as sharp 
edges and details textures. Additionally, our methods are a worthy choice for other 
auto-encoder compression networks to boost their performance.  

References 
[1] G. K. Wallace, “The jpeg still picture compression standard,” IEEE transactions on consumer 

electronics, 38(1), xviii- xxxiv, 1992. Article (CrossRef Link) 
[2] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The jpeg 2000 still image compression standard,” 

IEEE Signal processing magazine, 18(5), 36–58, 2001. Article (CrossRef Link)     
[3] F. Bellard, “BPG Image Format,” 2014. Accessed: 2017-01-30. Article (CrossRef Link) 
[4] J. Lainema, F. Bossen, W.-J. Han, J. Min, and K. Ugur, “Intra coding of the HEVC standard,” 

IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 12, pp. 1792–1801, Dec. 2012.  
Article (CrossRef Link) 

[5] F. Li, H. Bai, Y. Zhao, “FilterNet: Adaptive Information Filtering Network for Accurate and Fast 
Image Super-Resolution,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 
30, no. 6, pp. 1511-1523, 2019. Article (CrossRef Link) 

[6] J. Kim, J. Kwon Lee, K. Mu Lee, “Accurate image super-resolution using very deep convolutional 
networks,” in Proc. of the IEEE conference on computer vision and pattern recognition, 
1646-1654, 2016. Article (CrossRef Link) 

[7] F. Mentzer, E. Agustsson, M. Tschannen, et al., “Practical full resolution learned lossless image 
compression,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition,  
10629-10638, 2019. Article (CrossRef Link) 

[8] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image compression,” in Proc. of    
International Conference on Learning Representations, 2017. Article (CrossRef Link) 

[9] F. Mentzer, E. Agustsson, M. Tschannen, et al., “Conditional probability models for deep image 
compression,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 
4394-4402, 2018. Article (CrossRef Link) 

[10] M. Li, W. Zuo, S. Gu, et al., “Learning convolutional networks for content-weighted image 
compression,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition,  
3214-3223, 2018. Article (CrossRef Link) 

[11] G. Toderici, D. Vincent, N. Johnston, et al., “Full resolution image compression with recurrent 
neural networks,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 
5306-5314, 2017. Article (CrossRef Link) 

[12] D. E. Rumelhart, G. E. Hinton, R. J. Williams. “Learning internal representations by error 
propagation,” California Univ San Diego La Jolla Inst for Cognitive Science, 1985.  
Article (CrossRef Link) 

[13] Y. LeCun, B. E. Boser, J. S. Denker, et al., “Handwritten digit recognition with a back-propagation 
network,” in Proc. of Advances in neural information processing systems, 396-404, 1990.  
Article (CrossRef Link) 

[14] L Theis, W Shi, A Cunningham, F Huszár, “Lossy image compression with compressive 
autoencoders,” in Proc. of International Conference on Learning Representations, 2017.   
Article (CrossRef Link) 
 
 

https://doi.org/10.1109/30.125072
https://doi.org/10.1109/79.952804
https://bellard.org/bpg/
https://doi.org/10.1109/TCSVT.2012.2221525
https://doi.org/10.1109/TCSVT.2019.2906428
https://doi.org/10.1109/CVPR.2016.182
https://doi.org/10.1109/CVPR.2019.01088
http://arxiv.org/pdf/1611.01704
https://doi.org/10.1109/CVPR.2018.00462
https://doi.org/10.1109/CVPR.2018.00339
https://doi.org/10.1109/CVPR.2017.577
https://doi.org/10.21236/ADA164453
https://www.cs.rit.edu/%7Ejdb/tmp/lecun-90c.pdf
https://arxiv.org/pdf/1703.00395.pdf


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 9, September 2020                              3839  

[15] T. Dumas, A. Roumy, C. Guillemot. “Autoencoder based image compression: can the learning be 
quantization independent?,” in Proc. of IEEE International Conference on Acoustics, Speech and 
Signal Processing, 1188-1192, 2018. Article (CrossRef Link) 

[16] K. M. Nakanishi, S. Maeda, T. Miyato, et al., “Neural multi-scale image compression,” in Proc. of 
Asian Conference on Computer Vision. Springer, Cham, 718-732, 2018. Article (CrossRef Link) 

[17] N. Johnston, D. Vincent, D. Minnen, et al., “Improved lossy image compression with priming and 
spatially adaptive bit rates for recurrent networks,” in Proc. of the IEEE Conference on Computer 
Vision and Pattern Recognition, 4385-4393, 2018. Article (CrossRef Link) 

[18] S. Santurkar, D. Budden, N. Shavit. “Generative compression,” in Proc. of Picture Coding 
Symposium. IEEE, 258-262, 2018. Article (CrossRef Link) 

[19] D. P. Kingma, M. Welling. “Auto-encoding variational bayes,” in Proc. of International 
Conference on Learning Representations, 2014. Article (CrossRef Link) 

[20] E. Agustsson, M. Tschannen, F. Mentzer, et al., “Generative adversarial networks for extreme 
learned image compression,” in Proc. of the IEEE International Conference on Computer Vision, 
221-231, 2019. Article (CrossRef Link) 

[21] J. Johnson, A. Alahi, L. Fei-Fei. “Perceptual losses for real-time style transfer and 
super-resolution,” in Proc. of European conference on computer vision. Springer, Cham, 694-711, 
2016. Article (CrossRef Link) 

[22] M Jian, KM Lam, J Dong, et al., “Visual-patch-attention-aware Saliency Detection,” IEEE 
Transactions on Cybernetics, Vol. 45, No. 8, pp. 1575-1586, 2015. Article (CrossRef Link) 

[23] M  Jian, W zhang, Y Hui, et al., “Saliency detection based on directional patches extraction and 
principal local color contrast,” Journal of Visual Communication and Image Representation, Vol. 
57, pp. 1-11, 2018. Article (CrossRef Link) 

[24] J. Deng, W. Dong, R. Socher, et al., “Imagenet: A large-scale hierarchical image database,” in 
Proc. of IEEE Conference on Computer Vision and Pattern Recognition, 248-255, 2019.  
Article (CrossRef Link) 

[25] Kodak PhotoCD dataset. Article (CrossRef Link) 
[26] J. Ballé. “Efficient nonlinear transforms for lossy image compression,” in Proc. of Picture Coding 

Symposium. IEEE, 248-252, 2018. Article (CrossRef Link) 
[27] J. Ballé, D Minnen, S Singh, et al., “Variational image compression with a scale hyperprior,” in 

Proc. of International Conference on Learning Representations, 2018. Article (CrossRef Link) 
[28] Z. Wang, E. P. Simoncelli, A. C. Bovik, “Multiscale structural similarity for image quality 

assessment,” in Proc. of The Thrity-Seventh Asilomar Conference on Signals, Systems & 
Computers, 2, 1398-1402, 2003. Article (CrossRef Link) 

[29] J. Lee, S. Cho, S. K. Beack. “Context-adaptive entropy model for end-to-end optimized image 
compression,” in Proc. of International Conference on Learning Representations, 2019.  
Article (CrossRef Link) 

 
  

https://doi.org/10.1109/ICASSP.2018.8462263
https://doi.org/10.1007/978-3-030-20876-9_45
https://doi.org/10.1109/CVPR.2018.00461
https://doi.org/10.1109/PCS.2018.8456298
https://arxiv.org/abs/1312.6114
https://doi.org/10.1109/ICCV.2019.00031
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1109/TCYB.2014.2356200
https://doi.org/10.1016/j.jvcir.2018.10.008
https://doi.org/10.1109/CVPR.2009.5206848
http://r0k.us/graphics/kodak/
https://doi.org/10.1109/PCS.2018.8456272
http://arxiv.org/pdf/1802.01436
https://nyuscholars.nyu.edu/en/publications/multi-scale-structural-similarity-for-image-quality-assessment
https://arxiv.org/pdf/1809.10452.pdf


3840                           He et al.: Adaptively Importance Channel Selection for Perceptual Image Compression 

 
Yifan He received the B.S. degree in Communication Engineering in 2018 from the School 
of Automation and Information Engineering, Xi’an University of Technology. He is currently 
pursuing the M.S. degree in the Institute of Information Science, Beijing Jiaotong University. 
He works in image lossy compression and deep learning.   
 
 
 
 
 

 
Feng Li received his B.S. degree in Anhui Normal University, China, in 2012. Now, he is 
pursuing his Ph. D degree in Institute of Information Science, Beijing Jiaotong University, 
Beijing, China. His research interests are image and video compression, image and video 
super resolution, computer vision and deep learning. 
 
 
 
 
 

 
Huihui Bai received her B.S. degree from Beijing Jiaotong University, China, in     2001, 
and her Ph.D. degree from Beijing Jiaotong University, China, in 2008. She is currently a 
professor in Beijing Jiaotong University. She has been engaged in R&D work in video coding 
technologies and standards, such as HEVC, 3D video compression, multiple description 
video coding (MDC), and distributed video coding (DVC). 
 
 
 
 

 
Yao Zhao received the B.S. degree from Fuzhou University, China, in 1989, and the ME 
degree from Southeast University, Nanjing, China, in 1992, both from the Radio Engineering 
Department, and the PhD degree from the Institute of Information Science, Beijing Jiaotong 
University (BJTU), China, in 1996. He became an associate professor at BJTU in 1998 and 
became a professor in 2001. From 2001 to 2002, he was a senior research fellow with the 
Information and Communication Theory Group, Faculty of Information Technology and 
Systems, Delft University of Technology, Delft, The Netherlands. He is currently the director 
of the Institute of Information Science, BJTU. His current research interests include 
image/video coding, digital watermarking and forensics, and video analysis and 
understanding. He serves on the editorial boards of several international journals, including 
as associate editors of IEEE Transactions on Cybernetics, IEEE Signal Processing Letters, 
and an area editor of Signal Processing: Image Communication (Elsevier), etc. He was named 
a distinguished young scholar by the National Science Foundation of China in 2010, and was 
elected as a Chang Jiang Scholar of Ministry of Education of China in 2013. He is a senior 
member of the IEEE. 


	2.1 Bit allocation strategy
	2.2 Multi-scale structure for image compression
	2.3 Variable compression rate
	2.4 Generative compression
	3.1 Overview
	3.2 Hierarchical Auto-encoder Structure
	3.3 Adaptive Importance Map
	3.4 Encoding Perceptual Loss
	3.5 Loss Function
	4.1 Parameter Setting
	4.2 Performance Evaluation
	4.3 Ablation Study
	4.3.1 Adaptive importance map
	4.3.2 Encoder perceptual loss

